skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Marler, Joan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. AbstractMetastable levels of highly charged ions that can only decay via highly forbidden transitions can have a significant effect on the properties of high temperature plasmas. For example, the highly forbidden 3d$$^{10}$$ 10 $$_{J=0}$$ J = 0 - 3d$$^9$$ 9 4 s$$(\frac{5}{2},\frac{1}{2})_{J=3}$$ ( 5 2 , 1 2 ) J = 3 magnetic octupole (M3) transition in nickel-like ions can result in a large metastable population of its upper level which can then be ionized by electrons of energies below the ground state ionization potential. We present a method to study metastable electronic states in highly charged ions that decay by x-ray emission in electron beam ion traps (EBIT). The time evolution of the emission intensity can be used to study the parameters of ionization balance dynamics and the lifetime of metastable states. The temporal and energy resolution of a new transition-edge sensor microcalorimeter array enables these studies at the National Institute of Standards and Technology EBIT. Graphical abstractNOMAD calculated time evolution of the ratio of the Ni-like and Co-like lines in Nd at varying electron densities compared with measured ratios 
    more » « less
  2. Direct detection of gravitational waves (GWs) on 17 August 2017, propagating from a binary neutron star merger, or a “kilonova”, opened the era of multimessenger astronomy. The ejected material from neutron star mergers, or “kilonova”, is a good candidate for optical and near infrared follow-up observations after the detection of GWs. The kilonova from the ejecta of GW1780817 provided the first evidence for the astrophysical site of the synthesis of heavy nuclei through the rapid neutron capture process or r-process. Since properties of the emission are largely affected by opacities of the ejected material, enhancements in the available r-process data is important for neutron star merger modeling. However, given the complexity of the electronic structure of these heavy elements, considerable efforts are still needed to converge to a reliable set of atomic structure data. The aim of this work is to alleviate this situation for low charge state elements in the Os-like isoelectronic sequence. In this regard, the general-purpose relativistic atomic structure packages (GRASP0 and GRASP2K) were used to obtain energy levels and transition probabilities (E1 and M1). We provide line lists and expansion opacities for a range of r-process elements. We focus here on the Os isoelectronic sequence (Os I, Ir II, Pt III, Au IV, Hg V). The results are benchmarked against existing experimental data and prior calculations, and predictions of emission spectra relevant to kilonovae are provided. Fine-structure (M1) lines in the infrared potentially observable by the James Webb Space Telescope are highlighted. 
    more » « less